
JESSE HAKANEN
ACCELERATING IMAGE PROCESSING PIPELINE ON
MOBILE DEVICES USING GPU
Master of Science Thesis

Examiner: Professor Tommi Mikkonen
Examiner and topic approved by
the Council of the Faculty of
Computing and Electrical Engineering
on April 9th, 2014

I

ABSTRACT
TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
HAKANEN, JESSE: Accelerating Image Processing Pipeline on
Mobile Devices Using GPU
Master of Science Thesis, 54 pages
June 2014
Major: Software Engineering
Examiner: Professor Tommi Mikkonen
Keywords: GPU, image processing pipeline, mobile camera, Windows Phone, software
framework

Majority of current mobile devices include a camera. To meet the form-factor and
price requirements, the camera is typically built from inexpensive components which
causes defects such as noise, dead pixels and distortions. An acceptable image qua-
lity is achieved by processing algorithms which together form an image processing
pipeline. Hardware implementations typically offer the best performance and the
lowest power consumption, but software implementations can be used to cut costs
and maximize the flexibility of the system. However, software implementations may
be too ineffective and cause overheating. One alternative to pure hardware and
software implementations is the GPU.

In this thesis, a generic framework for GPU-based image processing is imple-
mented. The framework simplifies algorithm implementation and organization sig-
nificantly, and hides some hardware limitations that current mobile GPUs have.
The framework is evaluated by implementing an image processing pipeline which
consists of seven typical algorithms, and by comparing its performance, memory
consumption, power consumption and heat generation to an equivalent CPU imple-
mentation. This thesis also discusses optimizations that can be done for the GPU
implementation especially on mobile devices.

The experiments show that the GPU implementation is able to process images
over 40% faster than a multi-threaded CPU implementation. Biggest performance
gains were seen in algorithms that were computationally heavy. The GPU is also able
to process the same image with much less power consumption. On the other hand,
the GPU proved to produce more heat in the test device. With the tested pipeline,
also memory consumption was higher than with an optimized CPU implementation.

II

TIIVISTELMÄ
TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
HAKANEN, JESSE: Kuvankäsittelyliukuhihnan kiihdyttäminen mobiililaitteis-
sa GPU:ta käyttämällä
Diplomityö, 54 sivua
Kesäkuu 2014
Pääaine: Ohjelmistotuotanto
Tarkastaja: Professori Tommi Mikkonen
Avainsanat: GPU, kuvankäsittelyliukuhihna, mobiilikamera, Windows Phone, sovellus-
kehys

Useimmissa mobiililaitteissa on nykyään sisäänrakennettuna kamera. Jotta laittei-
den koko- ja hintavaatimukset täyttyisivät, rakennetaan kamerat usein halvoista
komponenteista, mikä aiheuttaa kuvaan virheitä, kuten kohinaa, kuolleita pikseleitä
ja vääristymiä. Kelvollinen kuvanlaatu saavutetaan kuvankäsittelyalgoritmeilla, jot-
ka yhdessä muodostavat kameran kuvankäsittelyliukuhihnan. Laitteistototeutukset
mahdollistavat tyypillisesti parhaan tehokkuuden ja matalimman virrankulutuksen,
mutta ohjelmistototeutuksilla voidaan saavuttaa pienempi hinta ja maksimoida jär-
jestelmän joustavuus. Ohjelmistoon perustuvat ratkaisut saattavat kuitenkin olla
liian tehottomia ja aiheuttaa laitteen ylikuumenemista. Yksi vaihtoehto pelkästään
laitteistoon ja ohjelmistoon perustuville ratkaisuille on GPU.

Tässä työssä toteutetaan yleiskäyttöinen sovelluskehys GPU-kuvaprosessointia
varten. Sovelluskehys yksinkertaistaa algoritmien toteutusta ja järjestelyä huomat-
tavasti sekä piilottaa tiettyjä rajoituksia, joita nykyisten mobiiliaitteiden GPU:issa
on. Sovelluskehystä arvioidaan toteuttamalla seitsemästä tyypillisestä algoritmista
koostuva kuvankäsittelyliukuhihihna, jonka tehokkuutta, muistinkulutusta, virran-
kulutusta ja lämmöntuottoa verrataan vastaavaan CPU-toteutukseen. Työssä esi-
tellään myös muutamia tapoja optimoida GPU-pohjaista prosessointia erityisesti
mobiililaitteissa.

Työssä suoritetut mittaukset osoittavat, että GPU pystyy käsittelemään kuvia
yli 40 % nopeammin kuin useaa ydintä hyödyntävä CPU-toteutus. Suurimmat te-
hokkuusparannukset saavutettiin algoritmeissa, jotka ovat laskennallisesti raskaita.
Lisäksi GPU pystyy käsittelemään saman kuvan paljon pienemmällä virrankulutuk-
sella. Toisaalta mittaukset osoittivat GPU:n tuottavan enemmän lämpöä testilait-
teessa. Testatulla kuvankäsittelyliukuhihnalla myös muistinkulutus oli korkeampi
kuin optimoidussa CPU-toteutuksessa.

III

PREFACE
This thesis was carried out while working in Nokia Smart Devices, Imaging
organization in Tampere, Finland between October 2013 and May 2014.

I would like to thank my colleagues in the algorithm and middleware team for
creating an inspiring atmosphere and providing help when needed. Special thanks
to Markus Vartiainen who supervised the thesis on behalf of Nokia and assisted me
throughout the whole process, and Christian Mäkelä who helped with algorithm
implementation and GPU-related issues. I also want to thank professor Tommi
Mikkonen from Tampere University of Technology for supervising the work and
providing useful tips during the writing process.

Tampere, May 2nd, 2014

Jesse Hakanen

IV

CONTENTS
1. Introduction . 1
2. Digital Camera System . 3

2.1 Hardware . 3
2.1.1 Lens System . 4
2.1.2 Image Sensor . 5

2.2 Image Processing Pipeline . 7
2.2.1 Image Formats . 7
2.2.2 Digital Image Processing Techniques 9
2.2.3 Processing Algorithms . 11

3. Image Processing on GPU . 15
3.1 Motivation . 15
3.2 Programmable Graphics Pipeline . 16
3.2.1 Vertex Shader . 17
3.2.2 Pixel Shader . 18

3.3 Utilizing GPU for Image Processing 20
3.4 Special Considerations for Mobile Devices 24

4. Framework for GPU-Based Image Processing 26
4.1 Direct3D and High Level Shading Language 26
4.2 Architecture . 29
4.3 Algorithm Interfaces . 30
4.4 Tiled Processing . 31
4.5 Resource Management . 33
4.5.1 Texture Pool . 34
4.5.2 Resource Cache . 35
4.5.3 State Manager . 36

5. Optimization for Mobile GPUs . 37
5.1 Test Hardware and Setup . 37
5.2 Fixed-Point versus Floating-Point . 37
5.3 Texture Size . 39
5.4 Concurrent Processing and Texture Transfers 41

6. Evaluation . 44
6.1 Processing Performance . 44
6.2 Memory Consumption . 45
6.3 Thermal Measurements . 46
6.4 Power Consumption . 49

7. Conclusion . 51
References . 52

V

TERMS AND DEFINITIONS
API Application Programming Interface

CCD Charge-Coupled Device

CFA Color Filter Array

CMOS Complementary Metal-Oxide-Semiconductor

CUDA Compute Unified Device Architecture

GPGPU General-Purpose Computing on Graphics Processing Units

GPU Graphics Processing Unit

HLSL High Level Shading Language

OpenCL Open Computing Language

OpenGL Open Graphics Library

SoC System on Chip

1

1. INTRODUCTION

Digital cameras are nowadays included in a wide range of mobile devices from entry
level smartphones to the most high-end models. For many people, mobile devices
have replaced a separate point-and-shoot camera as the main device for capturing
images and videos. Therefore, image quality has become an important aspect where
device manufacturers try to differentiate from others. To achieve an acceptable
image quality, image processing is needed in all digital still cameras. The combi-
nation of algorithms is called an image processing pipeline which is a key part in
construction of the final image.

To meet the requirements for an inexpensive consumer device, mobile cameras
are typically really small and cheap. In addition, the requirement for capturing
bigger and more detailed images has lead into a really small pixel size. These
kind of cameras typically suffer from several defects such as noise, dead pixels and
distortions which is why mobile image processing pipelines often require a large
number of algorithms to compensate the errors. In addition, it is desired to be able
process the image as efficiently as possible to allow a short latency between captures.
Hardware implementations typically offer the best performance and the lowest power
consumption, but they tend to be too expensive and limited when the target is
getting the best possible image quality at low price. Software implementations are
much more flexible and cost-effective, but their ineffectiveness may lead into poor
performance and cause problems with overheating.

One option for implementing the image processing pipeline is using a graphics
processing unit (GPU). The GPU offers an interesting option because it lies between
pure hardware and software implementations: it is a separate chip that is available
on all modern mobile devices, but it also has an adequate level of programmability.
Originally, GPUs implemented a fixed graphics pipeline which made it appropriate
for accelerating simple 3D graphics. During recent years, GPUs have evolved into
highly programmable chips which has made them an interesting option for general
computing as well. However, feature-wise mobile GPUs lag few years behind their
desktop counterparts which adds some limitations for the implementation.

The purpose of this thesis is to study the use of a GPU as an image processor
in mobile devices using Windows Phone platform. This includes studying how well
currently available graphics hardware and interfaces suit for image processing, what

1. Introduction 2

kind of limitations there are and how these limitations can be solved. The GPU is
compared to a basic software implementation in terms of processing performance,
memory consumption, heat generation and power consumption.

This thesis begins with an introduction to digital camera systems and image pro-
cessing pipelines in chapter 2. Chapter 2 also introduces an example pipeline which
will be later used when the GPU implementation is evaluated. Chapter 3 provides
a short introduction to the current programmable graphics pipelines, concentrat-
ing on the image processing point of view. In addition, chapter 3 provides ways to
implement different types image processing algorithms by utilizing the standard pro-
grammable parts of the graphics pipeline. Chapter 4 presents a generic framework
for GPU-based image processing. The framework is used to hide some of the limi-
tations that current mobile GPUs have. It also provides a higher abstraction level
for implementing algorithms on the GPU. Chapter 5 shows the available parameters
that can be used to tune the framework implementation. Chapter 5 also contains
measurements and calculations that were made to optimize those parameters. In
chapter 6, the implemented example pipeline on the GPU is evaluated by comparing
it to a CPU implementation. Finally, chapter 7 concludes the thesis.

3

2. DIGITAL CAMERA SYSTEM

Digital camera system is a combination of hardware and software that captures light
and converts it into a digital representation. This chapter familiarizes the reader into
the subject by providing a brief overview of the hardware components and required
processing algorithms in a digital still camera. The camera system represented in
this chapter is based on [1], unless stated otherwise.

2.1 Hardware

Digital still cameras have evolved considerably after the first consumer grade digital
camera, Casio QV-10, was released in 1994 [1, p. 9]. Today digital cameras are
embedded in a wide range of consumer products such as cars, toys and smartphones.
While digital cameras have become more and more affordable for average consumers,
the demand for capturing high quality images on inexpensive consumer products,
especially smartphones, has increased.

Image SensorLens
System Image Processing Pipeline Encoder Storage

Illumination

JPEG

Scene

Figure 2.1: The components of a digital still camera.

The digital camera system is typically formed by a lens system, an image sensor
and an image processing pipeline as illustrated in figure 2.1. When an image is
captured, the scene is first illuminated by the camera flash or by ambient lighting.
The light beams then travel through a lens system and reach an image sensor. The
image sensor creates a digital representation of the captured light. Raw image data
is read from the sensor and transferred into the image processing pipeline. Finally,
the processed image is encoded into a compressed format, such as JPEG, and saved
to a memory card or another storage device.

2. Digital Camera System 4

2.1.1 Lens System

The purpose of a lens system is to control how light reaches the image sensor.
The lens system typically consists of multiple lens elements, a fixed or adjustable
aperture and an infrared filter. Figure 2.2 shows the components in a typical mobile
camera lens. The infrared filter is used to attenuate the entering infrared signals
from reaching the sensor because the sensor typically has significant sensitivity in
infrared range [1].

Lens elements

Aperture

IR-filter

Sensor

Figure 2.2: A typical mobile camera lens system [2].

The quality of optics in the lens system has a significant impact on image quality.
Usually poor optics can be seen as softness in resulting images regardless of how
many pixels the image sensor has. In addition to optics quality, the lens system has
two other aspects that have an impact on the image: aperture and focal length. [1,
p. 21]

The focal length of an optical system is the distance from the lens to the sensor
when the lens is focused on infinity [1, p. 33]. When a light ray travels through
a lens, it is refracted so that the object appears sharpest at the focal point. The
focal length determines how big the angle of view of the lens is, and thus how big
the magnification of the lens is. A shorter focal length leads into stronger refraction
and therefore makes the object smaller on the sensor.

The aperture controls how wide the entering of the lens system is. This has an
effect on how much light enters the lens system, but also affects how the image is

2. Digital Camera System 5

focused on the sensor. A depth of field is the area (depth) within which the captured
object is in focus. With wide aperture, the depth of field becomes narrow and only
the captured object is on focus, while with narrow aperture the whole scene can
be in focus. The size of the aperture is defined as an F-number, smaller number
designating wider aperture [1, p. 25].

Mobile cameras typically have a really short focal length because of the small form
factor. A short focal length makes mobile phone cameras more prone to multiple
distortions, including chromatic aberration and lens vignetting. These distortions
must be corrected later in the image processing pipeline.

When a light ray enters the lens, it is refracted in an angle depending on its
wavelength. This phenomenon causes a distortion called chromatic aberration. In
chromatic aberration, the colors from the same source reach different pixels at the
sensor. With short focal lengths the refraction is higher which increases the spread-
ing of the rays. Chromatic aberration can be significantly reduced with multiple
lenses, but it can never be completely removed. [1, p. 294]

Lens vignetting appears as a radial darkening and decreased sharpness of the
image towards the corners of the frame. The biggest intensity is captured at the
center because light reaching that part of the sensor has a right angle. The angle
decreases towards the borders which causes radial dimming. With higher refraction
on short focal lengths, the difference between angles of different light rays becomes
bigger which has an increasing impact on lens vignetting. [1, p. 46]

2.1.2 Image Sensor

An image sensor is a device that converts light formed by the lens into measurable
signals. The image sensor consists of an array of light-sensitive components called
pixels. Each pixel is sensitive to light and able to convert the amount of captured
photons into an electrical voltage. In digital still cameras, the sensor materials are
chosen carefully, so that only photons with wavelengths of visual light (380 nm to
780 nm) enter the photosensitive parts [1, p. 54].

Color Separation

The sensor elements only detect the intensity of light falling into the detector. To
measure the intensity of each color channel separately, the arriving photons must be
somehow separated based on their wavelength. The predecessors of modern digital
still cameras used three sensors and a beam splitter separate the light into three
optical paths. [3, pp. 3-4]

However, the sensor is usually the most expensive component in a digital still
camera, so three sensor systems are not used in consumer grade cameras [3, p. 4].

2. Digital Camera System 6

To reduce expenses, only one sensor covered with a mosaic of color filters is used
instead. Each filter passes through light with a specific wavelength range. These
color filter arrays (CFA) are usually based on red, green and blue components,
although configurations based on more components exist [3]. Because each pixel does
not contain the intensity of all colors, the missing information must be interpolated
later in the image processing pipeline.

The most widely used CFA is the Bayer pattern which uses a symmetrical grid
of four color components as demonstrated in figure 2.3. The filter array contains 25
% red , 25 % blue and 50 % green pixels. The dominant amount of green is selected
because the human eye derives image details primarily from the green portion of the
visible light spectrum [1, p. 63].

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Gr R

B Gb

Color filter

Sensor cell

R G B R G B R G B

R Gr/Gb B

Light

Figure 2.3: A Bayer pattern color filter array and the structure of different color pixels.

Sensor Types

Two major image sensor technologies, Charge-Coupled Device (CCD) and Com-
plementary Metal-Oxide-Semiconductor (CMOS), are generally used in imaging de-
vices. The difference between these technologies is how light is converted into voltage
and how raw data is read from the sensor [4].

A CCD sensor transforms light into a simple analog signal while a CMOS sensor
integrates multiple features, such as analog to digital conversion, into one chip.
As a result, CMOS circuits are smaller, consume less power and are cheaper to
manufacture than a CCD sensor combined with a separate analog to digital converter
chip. CMOS sensors are popular especially in mobile devices and other low power
consumer devices. [4]

In modern smartphones, the resolution of sensors typically varies between 5 and
20 megapixels, although mobile sensors up to 41 megapixels exist. Generally, more
megapixels leads into bigger and detailed images, but it also means that individual
pixels become smaller. This can have a negative effect in image quality especially in

2. Digital Camera System 7

low light conditions since smaller pixels gather less photons. Longer exposure times
can be used to capture brighter images, and several technologies such as optical
image stabilization have been integrated into mobile cameras to keep the device
stable during capture. Long exposure times are mainly suitable for capturing objects
with very little movement. Another way to capture brighter images with small pixels
is to apply analog or digital gain to the image data. However, gaining the signal also
increases noise which must be later compensated in the image processing pipeline
[1, p. 89].

2.2 Image Processing Pipeline

To produce high-quality digital images from raw image data, a large amount of pro-
cessing is needed. The purpose of an image processing pipeline is to fix or minimize
the errors and distortions such as noise, dead pixels and chromatic aberration that
exist in raw data read from the sensor. Also, the difference between the way image
sensors capture light and the human visual system sees things must be compensated
to make the captured scene look natural to the human eye.

2.2.1 Image Formats

In digital image processing, different image formats are useful for different types of
filtering and processing algorithms. For this reason, the image usually goes through
multiple format conversions during the image processing pipeline. This section intro-
duces some of the most widely used formats and provides information about where
they are used and how they are usually stored in the system memory.

Raw Bayer

Raw Bayer is the initial format of the image data when it has been read from the
sensor. In figure 2.3, the top left corner has a Gr color component, but the order
of the components can be also different. For example, in RGrGbB Bayer order, the
first line contains red and green components and the second line contains green and
blue components. Terms Gr and Gb are used to identify whether the green pixel is
in RG or GB line.

Raw Bayer data typically has a bit depth of 6, 7, 8, 10 or 12 bits [5]. A naive way
to store the raw data into memory would be by adding extra padding to each value.
For example, 10 bit data could be padded with 6 bits to make the values follow the
8-byte boundaries and therefore easier to be stored to the system memory. However,
this would mean that 6 bits of memory would be wasted per pixel.

The Compact Camera Port 2 (CCP2) specification defines an interface between
a digital camera sensor and a mobile phone engine. In CCP2, the Raw Bayer data

2. Digital Camera System 8

is packed to keep memory usage and bandwidth as low as possible. For example,
10-bit data is packed into continuous memory so that four pixels are stored into
five bytes. The eight most significant bits of each pixel are stored into the first four
bytes, and the remaining two bits of each pixel into the last byte. This packing
scheme is shown in figure 2.4. [5]

P1[9:2] P2[9:2] P3[9:2] P4[9:2] P1[1:0] P1[1:0] P1[1:0] P1[1:0] P5[9:2] ...
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Figure 2.4: Packing 10-bit Raw Bayer data into memory [5].

RGB

RGB is an additive color space where red, green and blue are added together to
reproduce a single color. Typically full-color images are stored in 24 bits per pixel
where the intensity of each color channel is presented in eight bits. This image
format is also called RGB888 [5]. Typically color components in RGB888 are stored
in interleaved format, so that all three colors of each pixel are stored in adjacent
memory addresses. Another way to store RGB888 data is to use a separate buffer
for each color.

YCbCr

In YCbCr image format, the image information is divided into luminance compo-
nent (Y) and two chrominance components (Cb and Cr). Y contains a grayscale
presentation of the image while chrominance contains the color information.

The human eye is much more sensitive to differences in luminance than in chromi-
nance information [1, pp. 233]. This can be utilized to reduce the bandwidth and
memory usage when the image is processed or stored in YCbCr format. For example,
the chrominance components can be presented with a smaller resolution than the
luminance component [1, pp. 233]. There are three common chroma subsampling
patters used: 4:4:4, 4:2:2 and 4:2:0. In 4:4:4 sampling, each channel has the same
resolution. In 4:2:2 sampling, the horizontal resolution of the chrominance data is
half of the resolution of the luminance data. In 4:2:0, the chrominance resolution
is half of the luminance resolution in both vertical and horizontal directions. These
chroma subsampling patters are illustrated in figure 2.5.

YCbCr is also used by the JPEG image format [7]. Since images captures by
digital still cameras are usually stored in JPEG, the output of an image processing
pipeline is typically YCbCr. YCbCr is also useful for processing algorithms that
operate only on luminance or chrominance information. For example, there could

2. Digital Camera System 9

Y sample Cb sample Cr sample

4:4:4 sampling 4:2:2 sampling 4:2:0 sampling

Figure 2.5: Different YCbCr chroma subsampling patterns [6, p. 18].

be separate noise reduction algorithms for luminance and color data and YCbCr
provides one way to divide the information.

Since chrominance data can be subsampled, luminance and chrominance data are
usually stored in separate buffers. To use only one continuous memory buffer, these
buffers can be located next to each other in memory. For example, NV12 is a 4:2:0
format where all Y samples appear first in memory, followed by interleaved Cb and
Cr samples [8]. The memory layout of an NV12 image is illustrated in figure 2.6.

Y1 Y2 Y3 Y4 Y5 Y6

Y9 Y10 Y11 Y12 Y13 Y14

Y17 Y18 Y19 Y20 Y21 Y22

Y25 Y26 Y27 Y28 Y29 Y30

Cb1 Cr1 Cb2 Cr2 Cb3 Cr3

Cb5 Cr5 Cb6 Cr6 Cb7 Cr7

0x00

0x08

0x10

0x18

0x20

0x28

0x07

0x0F

0x17

0x1F

0x27

0x2F

Y7 Y8

Y15 Y16

Y23 Y24

Y31 Y32

Cr4

Cr8

Cr4

Cr8

Increasing memory addresses

Figure 2.6: The memory layout of an NV12 image.

2.2.2 Digital Image Processing Techniques

Digital image processing can be performed either in spatial domain or frequency
domain [9, p. 269]. Spatial domain processing means that the output pixel is cal-
culated based on values in the original image color space. Algorithms that operate

2. Digital Camera System 10

on frequency domain use Fourier or wavelet transform to convert the image into
frequency domain where the actual processing is performed. Spatial domain algo-
rithms are more common in digital still cameras since the transform to frequency
domain can be too complex for low power processors.

In spatial domain, the output pixel can be calculated either from a single pixel
or from multiple surrounding pixels. Single pixel algorithms have the basic form

sx,y = T (rx,y), (2.1)

where rx,y is the input pixel value, T is a transformation function and sx,y is the
output pixel at the same position as the input pixel [10, pp. 77]. Images captured
by digital still cameras typically have tens of millions of pixels, so using a complex
transformation function can be slow. In single pixel algorithms, a pre-calculated
lookup table can be used instead. A lookup table is a one-dimensional array con-
taining an output value for each possible input value. For example, with 10-bit data
the calculated lookup table would contain 210 = 1024 values. In the lookup table,
all possible output values are calculated in advance. The input value is used as an
index to lookup the actual value which can be much faster than calculating the value
of the transformation function for each pixel separately.

Instead of using only one pixel as an input, the output pixel can be also calculated
from multiple surrounding pixels. The selection of surrounding pixels is specified
by a filtering kernel. The currently processed pixel is typically located at the center
of the filtering kernel. The output is calculated by taking each surrounding pixel,
multiplying it by a coefficient defined in the kernel and accumulating the multiplied
values. The use of a filtering kernel is illustrated in figure 2.7.

Image

Filtering*kernel

Surrounding*pixels

100 0194

116

136 142

62 121

168

s4b8*
1
9= h1f136*v*2f84*v*1f142*v*2f97*v*4f25*v*2f0*v*1f62*v*2f58*v*1f121c*=*115

115
Multiply*with*

kernel*coefficients
Sum*and*divide*
by*kernel*size

4

2

22

2

1 1

1 1

25 097

58

136 142

62 121

84

Figure 2.7: A simple blur effect using a 3x3 filtering kernel.

An important feature to take into account when using a filtering kernel is how to
process the output pixel when the center of the filter approaches the border of the

2. Digital Camera System 11

image. A simple solution would be cropping border pixels after processing. If the
maximum kernel size used in the processing pipeline is N ∗N , the required crop from
each side of the image would be (N − 1)/2 pixels [10, p. 119]. However, cropping
is not often a desired effect since the size of the output image would be reduced.
Another way to handle border pixels is adding padding pixels outside of the image
area. After the image has been processed, the padding will removed which means
that the size of the image stays intact. A simple way to add padding is to use
zeros or other predefined values. The padding could also be clamped to value of the
border pixel. Even more versatile way is to mirror the border pixels which can be
done by mirroring on the border of the image or by mirroring on the border pixel.
The different border processing methods are illustrated in figure 2.8.

1 2 3 4

5 6 7 8

9 10 11 12

0 0 0 0

0 0 0 0

FillingMwithM
zeros

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

1 2 3 4

ClampingMtoM
borderMpixels

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 7 8

MirroringMon
imageMborder

1 2 3 4

5 6 7 8

9 10 11 12

5 6 7 8

9 10 11 12

MirroringMon
borderMpixels

Figure 2.8: Different methods for processing border pixels when a processing kernel is
used.

The applied border processing method depends on the image format. For exam-
ple, in RGB, any method can be used, although some methods may lead into better
results than others. However, in raw Bayer format any method except mirroring
on the border pixel would break the Bayer order and therefore cause pixels with
different colors to interact with each other. This could lead into artifacts in the final
image.

2.2.3 Processing Algorithms

Although image processing pipelines have existed in digital still cameras for years,
the actual processing algorithms are usually kept secret by the camera manufacturers
[11]. However, there are many algorithms that typically exist in some form in all
processing pipelines. Some of these algorithms are illustrated in figure 2.9.

In addition to algorithms in figure 2.9, image processing pipelines typically in-
clude algorithms for noise reduction, defective pixel correction and edge enhance-
ment [11][13]. Because these algorithms usually require advanced processing and the

2. Digital Camera System 12

Raw Image
Data Linearization

Gr
R
B

Gb

White
Balance

Gr
R
B

Gb

Vignetting
Correction

Gr
R
B

Gb
Demosaicing

Gr R B Gb

Color
Correction

R
G
B

Gamma
Correction

R
G
B

R G B

RGB to
YCbCr

Y
Cb
Cr

Output
Image

Figure 2.9: Algorithms in a typical image processing line [11].

actual implementations vary by manufacturer, we will overlook them in this thesis
and focus only on the most necessary algorithms that are typically used in mobile
devices. Also, the order of the algorithms can be different from the order above. For
example, white balance or vignetting correction could be done after demosaicing.

Linearization. Even though there is no light falling into the image sensor, the
measured intensity in a pixel is greater than zero. This effect is called dark current
and is caused by charge leakages that occur due to thermal effects in sensor cells
[1, p. 68]. The measured pixel value in completely dark environment is called the
black level. Similarly, the white level denotes the maximum intensity that a pixel
can reliably measure.

Linearization, or auto level, compensates the dark current by stretching the data
between black level and white level to fill the entire input range. This can be done
by using a histogram calculated from the raw data and finding points α and β that
correspond to 0.1% and 99.9% of the histogram, respectively. The linearized value
of each pixel can then be calculated from

sx,y = (rx,y − α)2b − 1
β − α

, (2.2)

where b is the bit depth of the image, rx,y is the input value and sx,y is the linearized
output value. After linearization, α represents black and therefore has a value of 0,
while β represents white and has a value of 2b − 1. [11]

White Balance. The human eye automatically adapts to lightning conditions
and recognizes the color of objects as they were observed in typical lightning condi-
tions. For example, a white paper looks white to the human eye even though there

2. Digital Camera System 13

is a tungsten light source giving a yellowish color cast to the paper. This feature
is called chromatic adaptation [1, p. 215]. An imaging sensor does not have this
feature, which means that the colors in a scene captured by the sensor look different
to what our eyes see. For raw Bayer data, white balance is typically fixed with the
following diagonal transform [14, p. 94]:


R

Gr

Gb

B


out

=


rwb 0 0 0
0 gwb 0 0
0 0 gwb 0
0 0 0 bwb




R

Gr

Gb

B


in

. (2.3)

There are multiple approaches for calculating parameters rwb, gwb and bwb. The
optimal algorithm may be a combination of multiple algorithms based on the current
lightning conditions. One thing that makes white balance parameter estimation
particularly difficult is the fact that real life scenes usually contain multiple different
light sources. [1, p. 216]

Vignetting Correction. Vignetting correction is needed to correct the grad-
ual attenuation of brightness towards the border of the image. To estimate the
vignetting effect on each pixel, a mathematical presentation, called vignetting func-
tion, can be calculated. The most straightforward way to calculate the vignetting
function is to capture a calibration image. However, the calculated function would
only be valid for similar conditions and camera settings [15].

Another way to calculate the vignetting function is to capture multiple overlap-
ping images of the same scene [16]. In digital still cameras containing an electronic
viewfinder, the images and image statistics captured from the viewfinder stream
can be utilized in calculations that require multiple images. There are also methods
based on single image only. Zheng et al. [15], for example, present method for
calculating the vignetting function by doing a content-based segmentation for the
image data.

Demosaicing. As already mentioned in section 2.1.2, raw data contains only one
color component for each pixel. The purpose of demosaicing, or CFA interpolation, is
to interpolate the missing color information so that each pixel contains all three color
components that are typically red, green and blue. The most straightforward way to
implement demosaicing is to use bilinear interpolation. In bilinear interpolation, the
missing two color components are calculated as an average of the surrounding pixels
having the specific color. However, a simple bilinear interpolation may increase
noise, aliasing and other color artifacts [14, p. 131-132]. Therefore, more advanced
demosaicing algorithms have been developed [17][18].

Color Correction. Color correction transforms the image data from sensor color
space to a standard RGB color space, such as sRGB. This transformation is required

2. Digital Camera System 14

because the spectral response of the sensor does not usually match the desired output
color space [14, p. 103]. Color correction also fixes cross-color bleeding that happens
in the color filter array [1, p. 232]. Color correction is typically implemented as a
3x3 matrix operation 

R

G

B


out

=


a1 a2 a3

b1 b2 b3

c1 c2 c3



R

G

B


in

, (2.4)

where coefficients an, bn and cn are calculated based on a captured standard image
such as the Macbeth ColorChecker [11][9, p. 553].

Gamma Correction. Gamma correction transforms the linear response of an
image sensor to match the non-linear response of a computer monitor [1, p. 233].
As a result, dark areas in the image become brighter than they were captured by
the sensor. The reason for storing data this way is to get more details to the dark
areas of the image where the human eye has the biggest sensitivity to differences
[9, p. 271]. Gamma correction can be implemented with a gamma curve which is
defined by equation

sx,y = rγx,y, (2.5)

where γ is referred to as gamma [10, pp. 80]. Lookup tables can be used to remove
the excessive amount of processing required for the power calculations.

RGB to YCbCr Conversion. The final step in the image processing pipeline
is to convert the processed sRGB image into YCbCr and therefore make it ready
to be encoded by a JPEG encoder. Typically chrominance data is also subsampled
after conversion and the data is stored into NV12 or other standard format.

15

3. IMAGE PROCESSING ON GPU

Graphics processing units were originally designed for drawing three-dimensional
objects to the screen, the main purpose of the first GPUs being the graphics ac-
celeration of 3D games. During recent years, GPUs have evolved into highly pro-
grammable chips which has enabled general-purpose computing on graphics process-
ing units (GPGPU). One of the possible uses is image processing, which, because of
its similarities to graphics rendering, appears to suit well for the GPU. This chapter
provides a short introduction to the current programmable graphics pipelines and
explains how they can be used for image processing purposes. The main focus of this
chapter is in modern mobile GPUs, although the introduced concepts and methods
are perfectly suitable for desktop GPUs too.

3.1 Motivation

Traditionally, image processing in mobile devices has been implemented in a sepa-
rate image signal processor (ISP). The use of a dedicated hardware chip makes it
possible to process images fast and with low relatively power consumption. However,
since the processing is implemented in hardware, there is little room for customiza-
tion. Typically, the available algorithms are hard-coded and can be only configured
with pre-defined parameters. In addition, ISPs generally have really long develop-
ment cycles which means that when an ISP is available for consumers, the provided
algorithms are already few years old. Since image processing algorithms evolve
continuously, the achieved image quality lags years behind the quality that could
be achieved. Highly programmable ISPs exist, but adding a new chip to a device
chip increases costs, so it would be tempting to implement image processing using
components that exist in the device in any case.

An obvious alternative to the ISP is the central processing unit (CPU). Since the
CPU is responsible for most of the general processing tasks in a mobile device, it
needs to have a large amount of processing power. The trend in todays CPUs is to
incorporate more and more cores instead of increasing the processing performance
of a singe core. This suits well for image processing purposes since the image can be
split into smaller parts that can be processed in parallel. Since the CPU is designed
for general-purpose computing, there are no flexibility limitations for implementing
new algorithms. The already available algorithms in a mobile device can be improved

3. Image Processing on GPU 16

and changed with an software update. Therefore, even a couple of years old device
can be updated with the best available algorithms. However, the increased number
of cores and processing performance typically leads into higher power consumption
and bigger heat generation. Because there are millions of pixels to process in a single
image, really intensive processing is needed. Since the CPU is used for most of the
general tasks in the system, its excessive use can cause visible slowness in other
processes as well. In addition, the increased heat generation can make the device
overheat. The system typically resolves heating issues by limiting the processing
performance of the CPU, which will not only make the image processing slower, but
also has an effect on other processes running in the system.

The GPU generally has better processing performance and energy efficiency than
the CPU which makes it a tempting choice for mobile image processing [12]. The
GPU also acts as a co-processor, so it frees up the CPU to perform other tasks. And
since the GPU is nowadays integrated into basically all mobile devices, there are no
additional hardware costs for utilizing it. When the camera is running, the GPU
is used very little which means that there is plenty of available processing power
that can be utilized. Although the GPU is not as highly programmable as the CPU
is, it has proven to have enough programmability for implementing advanced image
processing algorithms [19][12].

3.2 Programmable Graphics Pipeline

The processing model of a modern GPU is described by an abstraction called graph-
ics pipeline. The term pipeline is used because the transformations from geometrical
models to pixels in screen require multiple stages that are performed in sequence.
After one stage has finished processing, the output is passed to the next stage and
so on. Finally, after the last step, the output is drawn on the screen. One of the
advantages of such model is that data can be processed in small pieces simultane-
ously. When one stage has finished, it can immediately start processing the next
piece of data. This kind of processing model enables very good parallelization which
is one of the key things that makes modern graphics pipelines really powerful. [20,
pp. 14-17]

In the past, graphics pipelines had a fixed set of stages that were controlled by
parameters such as transformation matrices. Nowadays, these fixed function pro-
cessing blocks have been replaced with small programs called shaders. Shaders allow
the user to write really complex effects such as lightning and shadows. Programma-
bility has also enabled totally new use cases for the graphics pipeline, such as image
processing that will be discussed further in the next section. [20, p. 15]

The stages of a graphics pipeline are illustrated in figure 3.1. The pipeline is
controlled through a graphics API. The purpose of a graphics API is to be the link

3. Image Processing on GPU 17

between CPU and GPU and to provide abstractions for concepts such as textures,
vertices and buffers. Currently there are two widely used graphics APIs available:
DirectX and OpenGL. Although some terms are different in these APIs and the
shaders are programmed with a different language, the main concepts are the same.
When a command is run using a graphics API, it is put on a queue waiting to be pro-
cessed. This means that tasks done on a graphics API are generally asynchronous.
In games, for example, the state, as seen on the CPU side, is typically few frames
ahead of what is displayed on the screen. In addition to the input passed from the
CPU to the GPU, the graphics API also provides ways to read data back [20, p.
17].

GraphicsbAPI:
CPU-GPU
Boundary

GpubCommandsbL
DatabStream GPU

FrontbEnd
Primitive
Assembly

VertexbIndexb
Stream Rasterization

LbInterpolation

Assembled
LinesbLbPoints Rasterb

Operations

PixelbLocation
Stream Frameb

Buffer
PixelbUpdates

Programmable
Vertexb

Processor

Programmable
Pixel

Processor

Figure 3.1: A conceptual image of the programmable graphics pipeline [12].

The geometric description of an object in the graphics pipeline is expressed as
locations of vertices that form the object. When a vertex stream containing a
scene arrives to the graphics pipeline, each vertex is sent to a programmable vertex
processor. The purpose of a vertex processor is to transform the three-dimensional
coordinate of a vertex into a two-dimensional coordinate at which the vertex appears
at the screen. After vertex processing, transformed vertices arrive at the primitive
assembly stage where primitives such as triangles, lines and points are formed [12].
Also, portions of the geometry that would fall outside of the screen are clipped.

In the rasterization stage, assembled triangles, lines and points are converted into
pixels. Each pixel is then passed into a pixel processor which defines the color of
the pixel [20, p. 18]. After the pixel processor stage, the output pixel goes through
multiple operations before reaching a frame buffer. These operations include depth
and pixel ownership checks that test whether the pixel should be visible or not [12].
Depth checks are needed because there might be multiple objects in the scene drawn
at the same screen coordinate, but only the object closest to the camera should be
drawn. Figure 3.2 shows how vertices are transformed during the pipeline.

3.2.1 Vertex Shader

To customize the function of the vertex processor, a small program called vertex
shader is used. The vertex shader is run once per vertex and, in addition to the

3. Image Processing on GPU 18

0 1

23

Vertices Vertexf
Shader

Primitivef
Assembly

Rasterization Pixelf
Shader

Framef
Buffer

Figure 3.2: Vertices during different stages of the graphics pipeline.

position of the vertex, can also take user-defined variables as an input. These vari-
ables can be either attribute variables or uniform variables. Attribute variables are
defined per vertex. They can contain texture coordinates, color data and normal
information, for example. The vertex shader can pass attribute variables to the pixel
processor stage where the actual coloring of the pixel is done. Uniform variables are
constant for all vertices. Typically they contain different transformation and pro-
jection matrices that are used to transform the vertex from three-dimensional world
coordinates to two-dimensional screen coordinates. Also, light properties such as di-
rection and intensity, and material properties such as shininess are typically passed
as uniform variables. [21, pp. 139-141]

The output of the vertex shader must contain at least the position of the vertex.
Other typically used outputs include texture coordinates, vertex color and vertex
normal information. The vertex shader can also pass any user-defined data that
is needed in subsequent processing stages. For example, all variables that need to
have a different value for each pixel in the pixel processor must be created in the
vertex shader. After the vertex shader has been run for all vertices, the whole scene
is located in a 2x2 cube with opposite corners at (−1,−1,−1) and (1, 1, 1). Any
vertex located outside of these normalized device coordinates is either clipped based
on the primitive object or removed completely. Although the transformation in
vertex shader is made to two-dimensional screen coordinates, there is also the third
depth component which is later used in the raster operations stage to check whether
the pixel should be drawn or not. [21, p. 142] [20, p. 22]

3.2.2 Pixel Shader

A pixel shader, or fragment shader, is used to program the pixel processor. It is
run for each pixel after rasterization. The purpose of a pixel shader is to define
the color of the pixel. When a pixel shader is called, the output coordinate of the
pixel is already defined which means the pixel shader cannot change the position
of the pixel. In rasterization stage, the output variables of the vertex shader are
interpolated for each pixel. Figure 3.3 shows an example of a pixel shader that

3. Image Processing on GPU 19

takes position and color as an input from the vertex shader and sets the output
color of the pixel directly to the input color. Since the color value is interpolated
automatically for each pixel, the result is a gradient containing the input colors at
the corners. As seen in the example, pixel shaders define the color using four floating
point components, red, green, blue and alpha. The range of color components is [0,
1], where 1 denotes the maximum intensity. Similarly, the input of a pixel shader
could contain texture coordinates. A texture coordinate is defined by a pair of
floating point numbers between 0 and 1 so that (0, 0) is the top left corner and (1, 1)
is the bottom right corner of the texture. If vertices V0, V1 and V2 in figure 3.3
contained texture coordinates (0, 0), (1, 0) and (1

2 , 1), respectively, the result would
be a properly laid and scaled texture on top of the triangle.

V0 V1

V2

Pos: (-1, 1, 0)
Color: (0, 0, 0, 1) Pos: (1, 1, 0)

Color: (1, 1, 1, 1)

Pos: (0, -1, 0)
Color: (, , , 1)

Before pixel shader

V0 V1

V2

After pixel shader

(0, 0, 0)

Figure 3.3: The output of a pixel shader that sets the color of the pixel directly to the
color passed from the vertex shader.

In addition to input from the vertex shader, the pixel shader can also contain
uniform variables just like the vertex shader. Variable types specifically designed
for the pixel shader include textures and texture samplers. A texture contains a
bitmap image that can be read and used when calculating the output color. To read
a value from the texture, a sampler object is used. The sampler contains information
about how the texture sampled, for example, whether bilinear interpolation should
be used or what would be read if the texture is sampled outside of the texture
coordinate range [0, 1]. [21, p. 159].

Typically pixel shaders have only one output variable, the four-component color.
It is also possible to have multiple outputs, called render targets. The most common
render target is the frame buffer, but it is also possible to declare a texture as a
render target. This can be used in multipass rendering schemes. For example, a
mirror could be implemented by first drawing the scene into a texture and then
using that texture on top of the mirror surface. A texture can be also used as a
render target if the output image needs to be read back from the GPU. [21, pp.

3. Image Processing on GPU 20

205-206]

3.3 Utilizing GPU for Image Processing

Although the programmable graphics pipeline was originally intended for rendering
3D scenes, there are some capabilities that make it possible to utilize the pipeline
for image processing. These capabilities include reading a value from a texture into
a variable, doing calculations based on the value and writing it back to another
texture [21, pp. 239-240]. The ability to read the texture data back from the GPU
instead of drawing into the back buffer makes it possible to save the result image
or do further processing with it. A typical flow in GPU-based image processing is
illustrated in figure 3.4. The graphics API is used to provide a scene description
and a copy the input image into the GPU. The scene description is passed through
a vertex shader, but the actual image processing takes place in a pixel shader. The
input image is passed as a texture to the pixel shader which renders the output
into another texture. The output texture is finally read back from the GPU and
converted to a common image format.

CPU

GPU

Graphics
API

Input
Texture

Vertex
Shader

Scene
Description

Input
Image

Pixel
Shader

Output
Texture

Output
Image

Vertex
Buffer

Figure 3.4: A typical processing flow in GPU-based image processing.

When a GPU is utilized for image processing, the scene description can sim-
ply contain coordinates and other attribute variables required for drawing a two-
dimensional rectangle. Since triangles, points and lines typically are the only avail-
able primitives, the input rectangle must be split into two triangles as illustrated
in figure 3.5. Each of the six vertices contain a scene position which is used by the
GPU to define the position of each pixel in the pixel shader stage. In addition, each
vertex contains a texture coordinate which can be used to read an exact pixel from
the input texture. The vertex processing stage itself is typically quite simple among
image processing tasks. For most algorithms, the vertex shader simply passes the
scene description to the pixel shader.

3. Image Processing on GPU 21

V0 = P0

V1 V2 = P1

P2

Pos: (-1, 1, 0)
TexCoord: (0, 0)

Pos: (1, 1, 0)
TexCoord: (1, 0)

Pos: (-1, -1, 0)
TexCoord: (0, 1)

Pos: (1, -1, 0)
TexCoord: (1, 1)

(0, 0, 0)

Figure 3.5: A scene description used for GPU-based image processing tasks. The first
triangle is defined by vertices V1, V2 and V3 and the second triangle by vertices P1, P2 and
P3.

To pass the input image into the GPU, it must be copied into a texture. There
are multiple texture formats which can be used depending on the image format.
There are generally three different component setups available in texture formats:
one-component (R) textures, two-component (RG) textures, and four-component
(RGBA) textures. Although terms R, G, B, and A are used to identify the channels,
the actual data can be anything that fits the reserved space. Typical data types for
color components include unsigned integers, floating point values and signed integers.
Depending on precision requirements, the occupied space for each color component
can be between 8 and 32 bits. Table 3.1 presents one way to store different image
formats into a texture. Raw Bayer data can be stored into one four-component
texture. Since all components are stored in one pixel, only one texture lookup is
needed to process four pixels. Because both horizontal and vertical resolutions are
half of the original image resolution, the number of pixel shader runs per image
is also one quarter of the count required for processing a single-component, full
resolution texture. Because of the available texture bit depths, the raw data must
be padded to 16 or 8 bits. RGB and YCbCr data with 4:4:4 sampling can be
stored similarly into a standard four-component texture. There is some overhead
caused by the fourth alpha component which must be carried along since there
are typically no three-component textures available. YCbCr data with 4:2:2 or
4:2:0 subsampling is problematic since chrominance information has lower resolution
than lumimance information. One way to store such data is to use two textures:
one single-component texture for luminance data and one smaller two-component
texture for chrominance data.

Once the image has been copied into a texture, it can be bound as an input to
the pixel shader. Since the texture coordinate was already passed as an attribute
variable in the scene description, it is available as an input for the pixel shader.

3. Image Processing on GPU 22

Table 3.1: An example of texture formats for storing 800x600 image in different image
formats.

Image format Number of textures Texture formats Texture sizes

Raw Bayer 1 RGBA 400x300

RGB 1 RGBA 800x600

YCbCr (4:4:4) 1 RGBA 800x600

YCbCr (4:2:2) 2 R
RG

800x600
400x600

YCbCr (4:2:0) 2 R
RG

800x600
400x300

For single-pixel algorithms, this texture coordinate is the one used for sampling the
texture for the input pixel at the current location. However, for kernel-based algo-
rithms there must be a way to sample neighboring pixels. Since texture coordinates
have range between 0 and 1, a simple increment to the coordinate does not work.
Instead, the distance between two pixels in texture coordinates can be passed as a
uniform variable to the pixel shader. To make the neighboring lookups as simple as
possible, two uniform vector variables, dx and dy can be declared so that

dx =
1/w

0

 dy =
 0
1/h

 , (3.1)

where w is the width and h is the height of the texture. These variables can be then
used for jumping one pixel in texture coordinates to either direction. Listing 3.1
shows an example of of using 

0 1 0
1 −4 1
0 1 0

 (3.2)

as a processing kernel and dx and dy as uniform variables to implement a simple
edge detection in High Level Shading Language.

As seen in listing 3.1, there is no special handling implemented for border pixels.
Fortunately, sampling a texture with coordinates outside of the range [0, 1] is com-
mon in 3D rendering which is why graphics APIs have designed ways to handle the
situation. DirectX, for example, defines following texture addressing modes: wrap,
mirror, clamp, border and mirror once [22, p. 129]. The selected mode is defined
when the sampler object is created. From image processing perspective, clamp, bor-
der and mirror modes match first three modes illustrated in figure 2.8, respectively.

3. Image Processing on GPU 23

Texture2D Image : register (t0);
SamplerState Sampler : register (s0);

struct PixelShaderInput {
float4 pos : SV_POSITION ;
float2 texCoord : TEXCOORD0 ;

};

cbuffer constantBuffer : register (b0) {
float2 dx;
float2 dy;

};

float4 main(PixelShaderInput input) : SV_TARGET {
float4 color =

1 * Image. Sample (Sampler , input. texCoord - dy)
+ 1 * Image. Sample (Sampler , input. texCoord - dx)
- 4 * Image. Sample (Sampler , input. texCoord)
+ 1 * Image. Sample (Sampler , input. texCoord + dx)
+ 1 * Image. Sample (Sampler , input. texCoord + dy);

return color;
}

Listing 3.1: A simple edge detection implemented using High Level Shading Language.

However, mirroring on border pixel, which is required for raw Bayer data to keep
the Bayer order intact, must be implemented manually in the pixel shader.

Using lookup tables on the GPU is as simple as creating an addition one-
dimensional texture and using the input color to sample a value from it. Since
colors have the same [0, 1] range as texture coordinates, no extra conversions are
needed. With lookup tables it is also possible utilize the powerful bilinear interpo-
lation that GPUs support for texture lookups. For example, with 16-bit data the
required lookup table size would be 65536 items. However, for most cases a smaller
table, such as 2048 items provides enough precision as far as there is a method for
querying the missing values. If the lookup table sampler is declared to use bilin-
ear filtering, the missing information is automatically interpolated when the lookup
table is sampled. [23, p. 385]

As shown above, the GPU can be utilized for spatial image processing quite
easily. However, there are certain image processing tasks that are difficult, too
time consuming or even impossible to be efficiently implemented with the methods
above. Algorithms that take an image in and process some kind of statistics out are
generally one of the most difficult ones. One example is creating a histogram, i.e.,
calculating how many pixels in an image have different color values. The problem
with implementing histogram calculation in a pixel shader is the fact that the output
must be written to a predefined location in the output buffer. In general, pixel

3. Image Processing on GPU 24

shaders can flexibly gather information from different places at different sources,
but cannot easily scatter the output into different locations, based on input values.
[23, p. 394]

To allow even more general computing on GPUs, multiple platforms and frame-
works have been developed. Compute Unified Device Architecture (CUDA) allows
general purpose computing on NVIDIA GPUs [24]. Open Computing Language
(OpenCL) provides similar functionality for GPUs from other manufacturers [25].
DirectX also have an equivalent functionality called DirectCompute which, unlike
the others, is incorporated into the existing graphics API as a separate shader type
[26]. All of these GPGPU APIs enable dynamic scattering of the output. They
also add more control on defining the contents of input and output buffers without
having to use predefined texture types only.

3.4 Special Considerations for Mobile Devices

Mobile GPUs have multiple limitations and features that need to be taken into
account when implementing image processing algorithms on mobile devices. Al-
though the processing performance of mobile GPUs is increasing continuously, there
are significant differences in the architecture and design compared to their desk-
top counterparts [27]. The differences are mostly caused by the fact that mobile
GPUs were designed for low power consumption. An easy way to reduce power con-
sumption is to limit the number of cores and lower the memory bandwidth which
obviously have a negative impact on performance [28].

Desktop GPUs typically have several gigabytes of video memory reserved for
storing textures, shader code and other buffers. However, in mobile devices the
memory is shared between CPU and GPU. In addition to the shared memory, also
the memory bandwidth is shared. Since the graphics pipeline is mainly designed for
drawing pixels on the screen, the bandwidth available for reading data back from
the GPU may also be limited. This bandwidth bottleneck can be particularly visible
in GPU-based image processing since filtering operations require multiple texture
lookups per pixel. Although there is plenty of pure computing power available, the
processing algorithm may not be able to utilize it efficiently since the processing is
constrained by the memory bandwidth. Most high-end mobile GPUs have imple-
mented on-chip caches to reduce memory transactions during rendering [28], but
from image processing perspective these caches may be too small to significantly in-
crease the performance because input and output textures are too big to fit entirely
on caches. One way to reduce the number of memory transactions is to store data
compressed into memory and decompress it on-the-fly in the GPU. [29][27]

Another thing that limits the potential of utilizing mobile GPUs for image pro-
cessing is the absence of GPGPU APIs such as OpenCL and DirectCompute. Al-

3. Image Processing on GPU 25

though they are likely to be included in mobile GPUs in the future, currently image
processing algorithms must be implemented with vertex and pixel shaders [12]. How-
ever, as covered in the previous sections, these standard shaders alone are suitable
for implementing most spatial domain processing algorithms.

26

4. FRAMEWORK FOR GPU-BASED IMAGE
PROCESSING

Graphics APIs are designed to give full control to the GPU which is why their ab-
straction level is fairly low. Implementing an image processing pipeline on top of
built-in APIs would be time-consuming and tasks such as changing the order of the
algorithms or adding new algorithms would be difficult. Also, in image processing,
most of the available features are not used or are used very little which would cause
plenty of overhead in implementation. This chapter introduces a DirectX-based
framework designed solely on image processing use. The framework is designed so
that it allows the user to dynamically construct the processing pipeline from sepa-
rate processing blocks. It also provides a higher abstraction level for implementing
algorithms, yet keeping the low-level APIs available for advanced algorithms that
cannot be built with the APIs provided by the framework alone.

4.1 Direct3D and High Level Shading Language

Direct3D is the 3D-rendering API in the DirectX API family. It is designed by
Microsoft for use in Windows-based products. Direct3D is implemented in a way
that new versions of the API are backwards compatible with previous-generation
GPUs. The available features are defined by a feature level. Desktop GPUs typically
support the newest available feature level when they are released, but with mobile
GPUs it can take years before a feature level becomes available. For example, in
Windows Phone 8, the supported feature level is 9.3 although the Direct3D API is
already in version 11.2. The framework introduced in this chapter will be built with
Windows Phone usage in mind, so it will be based on the features available in the
feature level 9.3.

An overview of the Direct3D 11 pipeline is illustrated in figure 4.1. Unlike the
programmable graphics pipeline described in section 3.2 (p. 16), Direct3D runs the
input assembly stage before vertex shader, although this does not have any effect
on the shader implementation itself. After input assembly, the vertex shader is
run as usual. In Direct3D 9 the next stages are rasterization, pixel shader and
output merger which corresponds to the raster operations stage in figure 3.1 (p. 17).
In Direct3D 10 and 11, however, few extra stages can be enabled in the pipeline.
Direct3D 11 introduces a feature called tessellation which can be used to adjust the

4. Framework for GPU-Based Image Processing 27

details of a model dynamically. For example, when the camera is located close to
an object, the object could have more vertices than when the camera is far away
[21, p. 316]. After tessellation, the next stage in the pipeline is a geometry shader
stage which was introduced in Direct3D 10. A geometry shader can be used to
add new primitives such as points, lines and triangles to the scene. For example, a
Bézier curve could be implemented by providing the control points as an input to
the geometry shader and calculating actual the points of the curve dynamically in
the shader [21, pp. 301-302].

Another new feature added in Direct3D 11 is the compute shader. It is imple-
mented separately from the main rendering pipeline which is why it is not illustrated
in figure 4.1. The compute shader is part of the DirectCompute API which adds
better support for GPGPU in the DirectX API family. Compute shaders allow
general-purpose calculations that are impossible or difficult to implement using the
standard rendering pipeline, which is what makes it especially interesting from im-
age processing point of view. The framework introduced in this chapter does not
support DirectCompute because of the feature level limitations. However, compute
shaders support the same texture formats that are used in our implementation, so
adding the support will be pretty straightforward in the future. [30, p. 287-290]

InputMAssemblerMStage

VertexMShaderMStage

HullMShaderMStage

TessellatorMStage

DomainMShaderMStage

GeometryMShaderMStage

RasterizerMStage

PixelMShaderMStage

OutputMMergerMStage

NewMinM
Direct3DM11

NewMinM
Direct3DM10 M

em
or

yM
R

es
ou

rc
es

BB
uf

fe
rs

)MT
ex

tu
re

s)M
C

on
st

an
tM

Bu
ffe

rs
f

StreamMOutput
Stage

Figure 4.1: The Direct3D 11 pipeline and new features added to the API in recent versions
[31, p. 4].

4. Framework for GPU-Based Image Processing 28

All shader types in Direct3D are programmed using a programming language
called High Level Shading Language or High Level Shader Language (HLSL). In
addition to basic arithmetic operations, HLSL provides a set of predefined intrin-
sic functions for operations such as rounding and calculating trigonometric values.
HLSL is compiled into an optimized byte code which can be passed to the GPU.

There are some features in Direct3D that need to be taken into account when
implementing an image processing pipeline. Direct3D separates textures into de-
fault, dynamic, immutable and staging textures depending on their access rights,
as shown in table 4.1. Since there is no texture type which allows read and write
operations on both CPU and GPU, the pipeline must be built from at least three
textures. A dynamic texture is used as an input to the pipeline since it provides
write support for the CPU and read support for the GPU. In processing algorithms,
default textures must be used to be able to write into a texture and read it in the
next algorithm. Finally, to copy the data back from the GPU, it must be first copied
into a staging texture since default textures do not support read by the CPU. There
is a separate call in the Direct3D that can be used to make that copy. During vertex
shading, one more buffer copy of the data is made. Therefore, the total amount
of required buffer copies when processing a single image through one algorithm is
four as illustrated in figure 4.2. The bandwidth bottleneck is already a problem in
basic rendering, but the large amount of buffer copies emphasizes it even further.
Therefore, it is important to be able to do as much processing on the GPU at once
before reading the data back. An implementation where one algorithm would re-
quire CPU processing in the middle of the pipeline would have a serious impact on
performance.

Table 4.1: Available texture types and their access rights in Direct3D. The GPU write
and read access to staging textures is provided by separate commands. Staging textures
cannot be used as render targets in a pixel shader. [32]

Resource usage Default Dynamic Immutable Staging

GPU read yes yes yes (yes)
GPU write yes (yes)
CPU read yes
CPU write yes yes

Several hardware limitations are another thing that need to be taken into consid-
eration when implementing an image processing framework on top of Direct3D. One
significant limitation is the maximum texture size which is 4096x4096 for feature
level 9.3 [22]. In modern high-end mobile cameras, still image resolution is typically

4. Framework for GPU-Based Image Processing 29

bigger than that. For example, 5376x3024 pixels is a typical size for an image from
a 20MP sensor in 16:9 aspect ratio. One way to avoid this limitation is to split
the image into smaller segments called tiles. Another limitation is related to the
available texture formats. Although Direct3D 11 API supports all possible compo-
nent and bit depth combinations, the feature level 9.3 limits the availability of those
formats. For example, there are only few texture formats that can be bound as a
render target.

Dynamic
Texture

Input
Image

Algorithm* Default
Texture

* Staging
Texture

* Output
Image

*

Figure 4.2: Required textures and other buffers when processing a single image through
one algorithm using Direct3D. A buffer copy is created in stages marked with (*).

4.2 Architecture

The GPU processing framework is designed so that the pipeline can be built and
configured without having to touch the framework code itself. A high level archi-
tecture of the framework and the general processing flow is illustrated in figure 4.3.
The illustrated components can be separated into framework provided components
and user provided components.

Framework

Pipeline

AlgorithmO1 AlgorithmO2 AlgorithmON
555

15OProcess Input
Tiler

Input
Algorithm

65OInputOtexture

75OProcessOtile 85OOutputOtexture

Output
Algorithm

95OOutputOtexture25OProcess

Resource
Manager

Texture
Pool

Resource
Cache

State
Manager

ReserveOinputOtexture

InputOtexture

Textures3O
stateOchanges3O
shaders3Obuffers

GetO
imageO
info

35 GetO
tile
data

Image
info

45 55

Figure 4.3: A high level structure and the processing flow of the framework.

User provided components are registered to the pipeline using a framework object

4. Framework for GPU-Based Image Processing 30

which is the only object that is visible to the framework user. In addition to regis-
tering algorithms, it contains a method for initiating the processing. There are three
types of user provided components required. The actual processing algorithms are
implemented as pipeline algorithms. There must be at least one pipeline algorithm,
but the upper limit is not defined. The framework builds a pipeline automatically
based on the order the pipeline algorithms are registered. In addition, there must
be exactly one input and one output algorithm defined. The purpose of an input
algorithm is to provide the initial data to the framework in a GPU-compatible for-
mat, i.e., as a texture. Similarly, the output algorithm is responsible for handling
the output of the last pipeline algorithm. The operation of the framework can be
divided into nine stages that are also illustrated in figure 4.3:

Stages 1 and 2. A process call is initialized on the framework object. The call
is forwarded to the Input Tiler component.

Stages 3 and 4. Input Tiler asks Input Algorithm for image information such
as size and format. Based on the information and framework configuration, Input
Tiler calculates tiling parameters. These parameters include the required number
of processing tiles and the required overlap between tiles. This functionality is
described more closely in section 4.4.

Stages 5 and 6. Input Tiler asks for input data for single tile. Input Algorithm
returns the requested tile data as a texture.

Stages 7 and 8. The input data is passed to the Pipeline component. Pipeline
runs the data through each algorithm and returns the output of the last algorithm
as a texture.

Stage 9. The output texture of a single tile is passed to Output Algorithm.
Output Algorithm can copy the tile into a full output buffer, for example.

After the first tile has been processed, the processing will return back to stage 5,
where the next tile will be processed. This continues until there are no more tiles
to process. Each component in the pipeline has a reference to a component called
Resource Manager which allows the framework and algorithms to reuse buffers,
textures and other resources and minimize state changes on the GPU side.

4.3 Algorithm Interfaces

The use of input and output algorithms allow the user to define how data is stored
in the GPU and how it is read back. Therefore, the framework itself does not have
to decide which texture format to use for each input data format. In addition,
the use of an input algorithm allows multiple pipelines to be bound together. For
example, it would be possible to divide the pipeline into separate pre-processing and
post-processing pipelines and maintain them separately. In such case the output
algorithm of the first pre-processing pipeline could do some analysis based on the

4. Framework for GPU-Based Image Processing 31

output and then pass the output to the input algorithm of the post-processing
pipeline.

The use of an input algorithm also makes it possible to implement scenarios
where the input is a stream instead of a single image. For example, there could be
an input algorithm which reads input from a movie file and passes each frame to the
framework where some processing is done for each frame. The output algorithm in
such case could pass the data into a video encoder which could re-encode the movie
into another file. To implement one of the algorithm types, the user must implement
an interface provided by the framework. These interfaces are given in figure 4.4.

«interface»
Algorithm

+SetupBinputFormat:xFormat,
xxxxxxxxxxxoutputFormat:xFormatO
+ProcessBinputsx:xArray<Texture>,x
xxxxxxxxxxxxxoutputs:xArray<Texture>,
xxxxxxxxxxxxxparamsx:xProcessParamsO
+KernelBOx:xKernel

«interface»
InputAlgorithm

+FormatBOx:xFormat
+GetDataBparamsx:xProcessParams,x
xxxxxxxxxxxxxxxinputsx:xArray<Texture>O
+HasMoreFramesBOx:xBool

«interface»
OutputAlgorithm

+SetupBoutputFormatx:xFormatO
+ProcessOutputBparamsx:xProcessParams,x
xxxxxxxxxxxxxxxxxxxxxxxoutputsx:xArray<Texture>O

Figure 4.4: Algorithm interfaces provided by the framework.

InputAlgorithm interface contains methods for querying the input format and the
actual image data. To support multi-frame scenarios, there is also a method for
querying whether there are more frames available for processing.

Pipeline algorithms implement the Algorithm interface. There is a one-time setup
method which can be used to do one-time initializations based on image size, for
example. The process method takes output textures from previous algorithm as
input. The output textures are also pre-allocated by the framework and passed as
an argument to the process method. In addition, each algorithm has a method for
querying the required processing kernel. The use of this information is described
more closely in section 4.4.

OutputAlgorithm interface contains a similar Setup method as Algorithm inter-
face. It also has a method for processing the output of the last texture. The output
can contain multiple textures that are passed as an array to the method.

4.4 Tiled Processing

The main purpose of dividing the image into tiles is to bypass the hardware texture
size limitation. When smaller tiles are used, also memory consumption is decreased
because same textures can be reused for each tile. Also, the use of smaller textures
can lead into better performance since internal caches on the GPU are able to
accommodate a larger chunk of the input texture at once which decreases the amount
of lookups to the system memory.

Since filtering algorithms require information about surrounding pixels, there

4. Framework for GPU-Based Image Processing 32

must be a way to handle the borders between tiles. The border processing methods
described in figure 2.8 are not suitable for processing the borders of the tile since they
would cause artifacts to the border areas. Instead, the division to tiles can be done
so that there is a small amount of overlapping pixels on the tile border. After the
tile has been processed, the unneeded overlapping pixels are discarded. To maximize
the reuse of textures, the image is divided into equally sized tiles as illustrated in
figure 4.5. Overlapping pixels ox and oy are added to one side of the tile only,
depending on the position of the tile. Although there is some extra computation
required when reading the data back from correct coordinates, this makes it possible
utilize the built in texture mirroring and clamping features provided by Direct3D
on the actual image borders.

Tile (0,0)
Tile (1,0)

Tile (2,0)

T
ile (2,0)

T
ile (2,1)

T
ile (2,2)

oy

ox

Figure 4.5: An example of dividing an image into three tiles horizontally and vertically.

In our framework implementation, each algorithm has a method for querying its
processing kernel. The kernel is described by parameters kw, kh, kx and ky, where
kw is the width of the kernel and kh is the height of the kernel. Parameters kx and
ky are the x and y coordinates for the processed pixel in the kernel, (0, 0) being
the top left coordinate of the kernel. The amount of overlapping pixels required for
algorithm i can be calculated from

ox,i = 2 ∗max(kw,i − 1 − kx,i, kx,i) (4.1)
oy,i = 2 ∗max(kh,i − 1 − ky,i, ky,i). (4.2)

Since the amount of overlapping pixels must be the same for all textures to
maximize texture reuse, the selected value is defined by the maximum kernel size in

4. Framework for GPU-Based Image Processing 33

the processing pipeline. When the output texture is read back from the GPU, half
of the overlapping pixels are skipped from both textures. For example, when using a
5x5 kernel so that the processed pixel is located at the center, the value for both ox
and oy is 4. Figure 4.6 illustrates how the pixels are read from the output textures
in such case. To simplify the reading of correct pixels in the output algorithm, Input
Tiler passes pre-calculated process parameters containing texture coordinates to the
output algorithm.

Tile (0, 0)
Tile (1, 0)

o
x

o
x

o
x

The pixel is read
from tile (0, 0)

The pixel is read
from tile (1, 0)

Figure 4.6: Processing output pixels when a 5x5 kernel is used.

4.5 Resource Management

The graphics pipeline is controlled by switching shaders, changing active buffers, and
altering the current ones. These state changes should be generally avoided whenever
possible, since they disrupt the pipeline throughput [20, p. 472]. When a state
change is initiated, a new command is added to the command queue of the GPU.
Each item in the queue causes extra overhead to the GPU when the queue is flushed.
Also, buffers and shader objects consume memory, so reuse is required to keep the
memory consumption low. When the amount of GPU resources is low, also the
possibility that the resource is already available in GPU caches when the resource is
needed increases. Reusing objects also decreases the framework initialization time
since there is less data that needs to be transferred and possible converted to a
GPU-compatible format. For example, the creation of shader objects takes a while
because the GPU has to compile the shader byte code into its internal format. To
maximize the reuse of buffers and to avoid unnecessary state changes, the framework
implements a separate resource manager component. The resource manager object is

4. Framework for GPU-Based Image Processing 34

passed to all other components and algorithms, so that it can be used anytime. The
resource manager contains separate subcomponents for managing textures, other
resources and state changes.

4.5.1 Texture Pool

Since the pipeline is implemented by processing an image from a texture to another,
some kind of texture handling must be implemented on the framework side. When
a new input or output texture is needed, the framework queries the texture pool
component for a texture buffer. If an available texture is found, it is returned,
otherwise a new texture is created. When the texture is no longer needed, the
framework can return it to the pool. In case an algorithm needs intermediate buffers,
for example, the texture pool is visible to them through the resource manager.

Texture handling inside the pipeline is implemented using a scheme called ping-
pong buffering. In ping-pong buffering, the output of an algorithm is passed directly
as an input to the next algorithm. The next algorithm can then reuse the input
of the first algorithm as an output buffer. On the GPU the same buffer can be
reused as long as it has a compatible format, i.e. the same texture format and
size. Figure 4.7 shows an example of ping-pong buffering with three algorithms.
Algorithms 1 and 2 have the same input and output format, so textures 1 and 2
can be reused. Algorithm 3, however, has a different output format which is why an
additional output texture is required. The same processing sequence is illustrated
as a sequence diagram in figure 4.8.

Texture 1
Format 1

Algorithm 1 Texture 2
Format 1

Texture 2
Format 1

Algorithm 2 Texture 1
Format 1

Texture 1
Format 1

Algorithm 3 Texture 3
Format 2

Figure 4.7: The ping-pong buffering scheme in GPU-based image processing.

4. Framework for GPU-Based Image Processing 35

Pipeline TextureOPool AlgorithmO1 AlgorithmO2 AlgorithmO3

ProcessOtile ReserveO
inputObuffers NewObuffersO

created

ReserveO
outputObuffers

Process

ReleaseO
inputObuffers

ReserveO
outputObuffers

Matching
buffersOfound

Process

ReleaseO
inputObuffers

ReserveO
outputObuffers

Process

NewObuffersO
created

ReleaseO
inputObuffers

OutputObuffers

Figure 4.8: The processing flow inside the pipeline component.

4.5.2 Resource Cache

In addition to textures, also buffers and shaders can be reused. The scene is de-
scribed by vertex and index buffers, which, for most algorithms, contain the exactly
same description as illustrated in figure 3.5. An easy way would be using the same
buffer for all algorithms, but that would break the generic nature of the framework.
In some cases, an algorithm might need to use a different vertex buffer which is
why a more sophisticated method for handling buffers must be implemented. The
resource cache keeps reference to all created vertex and index buffers. When a new
buffer is created, the resource cache is called with parameters containing informa-
tion such as buffer size and formats of the individual items inside the buffer. If a
buffer with same parameters already exists, it is returned, otherwise a new buffer is
created. If an algorithm needs a buffer that contains dynamically changing data, it
can create the buffer object without using the cache.

The resource cache also has a store for pixel and vertex shaders. Typically shaders
are compiled into header files. The compiled header file contains a field in a universal
byte code format, which is supported by both desktop and mobile GPUs. Since the
byte code is available in a header as a byte array, the pointer to the byte array can

4. Framework for GPU-Based Image Processing 36

be passed to the resource cache when the shader object is created. If the resource
cache finds a previous shader object created for the same byte buffer pointer, it can
return that object.

4.5.3 State Manager

While texture pool and resource cache are able to maximize the reuse of buffers and
other objects, they do not prevent algorithms or other components from changing
active buffers and shaders unnecessarily. For example, when an algorithm sets the
active vertex shader, it cannot know if the same shader is already active on the
GPU. The graphics API can be queried for the current shader, but that adds some
unwanted stress to the bus between the CPU and the GPU. In addition, it adds
extra logic for each case when the state of the GPU is changed. A simple solution
for reducing state changes is to keep a copy of the GPU state in the CPU memory,
which is the purpose of the state manager component. Whenever an algorithm or
another framework component wants to change the state of the GPU, it calls the
state manager to do that. Since the state manager knows what the currently active
shader or buffer is, it can either update the actual GPU state or skip the call in case
the passed object is already active.

The actual cost of a state change depends on hardware platform, driver and
the type of state variable being modified [20, p. 472]. In modern GPUs there is
most likely already logic that handles the cases when the same vertex shader, for
example, is set active multiple times. But since a generic processing framework
may run in multiple different platforms, it makes sense to implement the state
manager as a separate component. The required overhead on the CPU side to
keep a reference to the active buffers and shaders is insignificant compared to the
memory and processing requirements of other components. Since buffers and shaders
are already cached and reused, the state manager can diminish a large amount of
calls to the graphics API. It also keeps the command queue on the GPU as small as
possible.

37

5. OPTIMIZATION FOR MOBILE GPUS

Although there is more and more raw computing power available in mobile GPUs,
the limited memory bandwidth can have a significant impact on achieved perfor-
mance. In image processing, memory bandwidth requirements are very high because
the image data is passed through the graphics pipeline as textures. There are gen-
erally three types of methods for reducing the memory transfer between GPU and
system memory: reducing the amount of transferred data per pixel, reducing the
amount of memory lookups and optimizing the size of buffers so that the requested
data is more likely available in caches when needed. This chapter provides some
methods for reducing latencies caused by the limited memory bandwidth especially
in mobile GPUs.

5.1 Test Hardware and Setup

The specifications of a test hardware used in optimization and measurements are
listed in table 5.1.
Table 5.1: The test hardware and image formats used in optimizations and measurements.

SoC Qualcomm Snapdragon 800
CPU 4x Krait 400 (Up to 2.3 GHz per core)
GPU Adreno 330 (450 MHz)

Input image Raw Bayer (5376x3024, 10 bits per pixel)
Output image YCbCr 4:4:4 (5376x3024, 24 bits per pixel)

The test pipeline contains seven algorithms as illustrated in figure 2.9. Each
algorithm is run in a separate pixel shader. The input is a 5376x3024 raw Bayer
image captured by a 20 megapixel sensor. The input is passed as 16-bit fixed point
data to the GPU texture and read back as 8-bit to reduce bandwidth costs. The
input image contains a typical studio scene used in camera measurements and the
output of the pipeline is an YCbCr 4:4:4 image which is illustrated in figure 5.1.

5.2 Fixed-Point versus Floating-Point

Most variables, such as colors, texture coordinates and scene coordinates, are passed
to shaders as floating point numbers, which means that majority of the actual cal-

5. Optimization for Mobile GPUs 38

Figure 5.1: The scene used as an input image in measurements.

culations are done using floating point arithmetics. For this reason, arithmetic units
inside a GPU are designed to be really efficient on floating point calculations. When
algorithms are implemented on the CPU, the best performance is typically achieved
with fixed-point arithmetics. However, on the GPU there is an extra conversion
required when a single point value read from the texture is passed to a shader. This
can be avoided by using floating point textures.

Both 32-bit and 64-bit floating point sizes are generally used in applications out-
side of the GPU scope, but GPUs also have support for half-precision, 16-bit floating
point. The 16-bit version provides an interesting option from image processing per-
spective since it requires only half of the space and bandwidth compared the regular
32-bit floating point. However, the limited precision of 16-bit values can have a
visible impact on the output image. To measure the impact, some kind of metrics
can be used to calculate the difference between output images. In this case, the dif-
ference is caused only by limited precision, so a simple metric such as the Euclidean
distance can be used. Let x and y be two w by h images, x = (x1, x2, x3, ..., xwh),
y = (y1, y2, y3, ..., ywh), where xlw+k and ylw+k are the pixel values at location (k, l).
The normalized Euclidean distance between x and y can be calculated from [33]

d2
E,norm(x,y) =

∑wh
k=1(xk − yk)2

wh
. (5.1)

The calculated Euclidean distance describes the square of an average difference
between pixels at the same position, bigger value denoting bigger difference.

5. Optimization for Mobile GPUs 39

The test pipeline was run using 32-bit and 16-bit floating point textures and
16-bit and 8-bit fixed point textures. The input for the pipeline was provided as
16-bit fixed point values, but after the first algorithm, the processing was done using
the specified format. Finally, the data was converted to 8 bits before reading back
from the GPU. The comparison was done based on these converted 8-bit values and
32-bit floating point texture format was used as a reference because it provides the
best precision. Table 5.2 summarizes measured processing times and normalized
Euclidean distances for the test image.

Table 5.2: Comparison of different texture formats. 32-bit floating-point is used as a
reference.

Texture format Bit depth Processing time Euclidean distance

Floating point 32 100.0% 0.0000
Floating point 16 59.1% 0.1602
Fixed point 16 145.9% 0.0066
Fixed point 8 47.5% 2.2415

As expected, the processing time almost halves when the bit depth is decreased
from 32 to 16 in floating point format. With fixed point, however, the processing
performance gains are even higher when moving from 16 bits to 8 bits. This could
be caused by optimizations that are done on hardware level for 8-bit data. The
normalized Euclidean Distances indicate that the difference between 32-bit floating
point and 16-bit fixed point is insignificant. A larger difference in the image can
be seen when moving to 8 bits. Storing the intermediate buffers in only 8 bits is
clearly not enough to provide an adequate image quality, although it has the fastest
processing time.

Based on the measurements, the best option for a texture format appears to be
16-bit floating point. It provides better processing performance than 32-bit floating
point, yet giving an adequate image quality. Another good aspect of using floating
point textures is that the best precision is available in low values where the hu-
man eye is most sensitive to differences. The difference in the measured Euclidean
distance is most likely caused by rounding errors that happen on the upper, more
inaccurate values where differences are not that significant for the human eye.

5.3 Texture Size

GPU manufactures typically advice to use as small textures as possible to gain the
best performance. The smaller the used textures are, the bigger the probability that
the texture is already in internal caches when needed is. In image processing, smaller

5. Optimization for Mobile GPUs 40

textures can be used by dividing the image into smaller tiles. However, since there
must be a certain amount of overlapping pixels between in each file, the decrease in
tile size increases the total amount of processed pixels and thus adds some overhead.
In addition, smaller tiles lead into more runs for the graphics pipeline and more state
changes in the GPU which can have a significant impact on processing times.

The number of pixels to process in the whole image including overlapping pixels
is given by

N = hoxnx + woyny + oxoynxny + wh, (5.2)

where h is the height of the image, ox is the number overlapping pixels in horizontal
direction, nx > 1 is the number of tiles in horizontal direction, w is the width of the
image, oy is the number of overlapping pixels in vertical direction and ny > 1 is the
number of tiles in vertical direction. To find the optimal texture size, the pipeline
was run by dividing the input image into different amount of tiles in horizontal and
vertical direction. In this case w = 5376, h = 3024 and ox = oy = 6, so the total
number of pixels is

N = 18144nx + 32256ny + 36nxny + 16257024. (5.3)

Measured processing times and calculated values forN are illustrated in figure 5.2.
The total number of pixels is scaled so that the 100% line matches the minimum
value of N . The graph clearly indicates that the increase in the total number of
pixels is not significant compared to the total pixel count. To simplify the graph,
the texture dimensions are described by a single value dt which is given by

dt =

√√√√ w

nx

h

ny
. (5.4)

This represents the width and height of a square texture containing the same amount
of pixels as the texture in question.

As expected, the processing time decreases when the texture size increases. The
fastest processing time was achieved with the biggest texture size, i.e when nx = 2
and ny = 1. However, there is no significant decrease in processing times when
the texture dimension is decreased. This is most likely caused by improved cache
hit rate inside the GPU. A more significant increase in the processing time can be
seen when the texture dimension is decreased below 256. The most optimal texture
size according to these measurements in terms of memory usage and processing
time appears to be 390x384. The corresponding values for nx and ny are 14 and 8,
respectively. The measured processing time with this configuration was 113% of the
best achievable processing time which is still tolerable. The memory consumption,

5. Optimization for Mobile GPUs 41

128 256 512 1024 20480

200

400

600

800

1000

1200

1400

dt (pixels)

Pr
oc
es
sin

g
tim

e
(%

)
Measured processing time

0

0,5

1

1,5

2

2,5
·108

N
um

be
r
of

pi
xe
ls

Total number of pixels

Figure 5.2: The processing time of the pipeline with different texture sizes.

however, is only 1.84% of the memory required by the biggest possible texture which
in this case is 2694x3024.

5.4 Concurrent Processing and Texture Transfers

So far, processing times have been measured so that the processing time of each
tile has been calculated separately and then summed together. However, processing
tiles individually can have a severe impact on performance, because the GPU must
synchronize with the CPU each time the data is read back. It takes a while to
transfer the data back from the GPU which denotes that the GPU is idle for a
relatively long period of time. One way to solve the issue is to provide as much
commands and data to the GPU at once as possible.

In our framework, providing more input to the GPU at once is fairly simple. The
input algorithm can be queried for multiple input tiles at once before they are passed
to the pipeline. Similarly, the output textures can be buffered into an array before
they are read back. The execution timelines of concurrent and non-concurrent cases
are illustrated in figure 5.3. The achieved performance gain is related to the amount
of input textures provided to the GPU at once, but the downside of doing multiple
texture uploads and downloads at once is the fact that more input and output
textures are needed, resulting into a higher memory usage. Since the pipeline is

5. Optimization for Mobile GPUs 42

GPU

CPU Upload
Process

Time

DownloadOther work

Idle

Time

(a)

(b)

Upload
Process

DownloadOther work

Upload
Process

DownloadOther
work

Process
DownloadUpload

Other
work

GPU

CPU

Figure 5.3: Execution timelines in cases (a) when there is no concurrency between texture
transfers and processing and (b) when processing is done in parallel with texture transfers.

constructed from multiple stages, the input texture is needed only on the first stage.
Therefore, once the first algorithm has run, the input texture is available for the
next tile. Let the amount of tiles passed simultaneously to the pipeline be q. Instead
of allocating q input buffers and q output buffers, the framework can allocate only
one input texture and reuse it for all tiles. However, to store all output buffers, q
textures are required.

2 4 6 8 10 12 14 1670

80

90

100

q (tiles)

Pr
oc
es
sin

g
tim

e
(%

)

Measured processing time

Figure 5.4: The processing time with different q values.

Since the image is split into nx tiles in horizontal dimension and ny tiles in
vertical dimension, the biggest possible value for q is nxny. To find the most optimal
value, the total processing time was measured for q values between 0 and 16. The
measurements were taken with the optimal values for nx and ny which, based on
section 5.3, are 14 and 8. Measured processing times are illustrated as a function of
q in figure 5.4. The graph shows that the processing time decreases until a certain

5. Optimization for Mobile GPUs 43

optimal number of input textures in reached. The optimal value for q appears to
be between 6 and 8. Increasing the value beyond that only increases the memory
consumption without giving a significant improvement in performance, since the
GPU has enough data to process without going into the idle state.

44

6. EVALUATION

The framework was evaluated by comparing it to a traditional CPU implementation.
The test pipeline used floating point textures and same algorithms as the one used
in chapter 5. All measurements were taken using optimized parameters from the
same chapter, as summarized in table 6.1.

Table 6.1: The framework processing parameters used in measurements.

Description Symbol Value

Bit depth b 16
Number of tiles horizontally nx 14
Number of tiles vertically ny 8
Number of output textures q 8

6.1 Processing Performance

The processing performance of the framework was measured against single-threaded
and multi-threaded CPU implementations. Since the test device had four CPU
cores, the multi-threaded version is approximately four times faster than the single-
threaded version, hence representing the best available performance on the CPU
side. Measured processing times for each algorithm and for the whole pipeline are
listed in table 6.2. With the tested pipeline, GPU processing took 78.9% less time
than the single-threaded CPU implementation and 40.6% less time than the multi-
threaded implementation. The time required for buffer transfers was 41% of the
total processing time which clearly highlights the bandwidth bottleneck problem.
However, since processing is done in parallel with buffer transfers, the GPU is able
to work almost continuously without synchronizing with the CPU.

The measurements also indicate that the GPU is the most efficient in algorithms
that are computationally heavy, such as demosaicing. Matrix multiplications in
color correction and RGB to YCbCr conversion were also more efficient on the
GPU. On the other hand, simple single-pixel algorithms such as linearization and
white balance were proven to be faster on the CPU. Also, there is no significant
performance improvement in algorithms that were implemented using a lookup table,
such as gamma correction. These kind of algorithms can be implemented efficiently

6. Evaluation 45

Table 6.2: Measured GPU processing times compared to a CPU implementation.

Algorithm Processing time
(+/-%)

Processing time
(multi-threaded) (+/-%)

Linearization -28.8% +98.6%
White Balance -36.8% +76.3%
Vignetting Correction -94.8% -85.5%
Demosaicing -83.5% -54.1%
Color Correction -92.1% -78.0%
Gamma Correction -67.8% -10.2%
RGB to YCbCr Conversion -74.5% -28.8%

Whole pipeline -78.9% -40.6%

on the CPU because data can be processed in-place without making a buffer copy,
which is inevitable in the GPU implementation.

6.2 Memory Consumption

The memory consumption of the framework was compared to a CPU version which
implements a simple ping-pong buffering scheme. On the CPU side, ping-pong
buffering can be implemented with two memory buffers that have the same size.
The size is determined by the biggest output buffer in the pipeline. To achieve the
same image quality as the GPU implementation, 16-bit fixed point values (48 bits per
pixel) were used. Therefore, the memory requirement for the CPU implementation
is 2 * 6 * 5376 * 3024 B ≈ 186.0 MB. The memory consumption of the GPU
implementation is highly dependent on parameters nx, ny and q. Increasing nx and
ny decreases the memory consumption while increasing q has an opposite effect. In
real use-cases, the framework can be tuned according to requirements and hardware
limitations. For example, for low-end devices the memory consumption could be
decreased at the cost of increased processing times, while high-end devices with
high resolution cameras might have the opposite approach.

The total memory consumption of the framework using optimized parameters is
calculated in table 6.3. The listed memory usage denotes the additional memory that
is required for the specific buffer. In case the listed value is zero, the algorithm is able
to re-use one of the previously allocated textures. Texture formats are listed using a
naming scheme defined by Direct3D [32]. The calculations do not include memory
required for Direct3D initialization since that is highly dependent on platform and
therefore difficult to calculate precisely. Also, small buffers such as vertex and index
buffers are not included in calculations since they are insignificant compared to

6. Evaluation 46

the total memory consumption. According to the calculations, the total memory
consumption including buffers on both CPU and GPU side is 74.2 MB which is
60.1% lower than with a traditional two-buffer CPU implementation.

Table 6.3: The memory consumption of the framework and buffers.

Algorithm Texture Format Size Memory
usage

Input Algorithm Output R16G16B16A16_FLOAT 195x192 +292.5 kB

Linearization Input R16G16B16A16_FLOAT 195x192 +0 kB
Output R16G16B16A16_FLOAT 195x192 +292.5 kB

White Balance Input R16G16B16A16_FLOAT 195x192 +292.5 kB
Output R16G16B16A16_FLOAT 195x192 +0 kB

Vignetting
Correction

Input R16G16B16A16_FLOAT 195x192 +0 kB
Output R16G16B16A16_FLOAT 195x192 +0 kB

Demosaicing Input R16G16B16A16_FLOAT 195x192 +0 kB
Output R16G16B16A16_FLOAT 390x384 +1170.0 kB

Color
Correction

Input R16G16B16A16_FLOAT 390x384 +0 kB
Output R16G16B16A16_FLOAT 390x384 +1170.0 kB

Gamma
Correction

Input R16G16B16A16_FLOAT 390x384 +0 kB
Output R16G16B16A16_FLOAT 390x384 +0 kB

RGB to YCbCr
Conversion

Input R16G16B16A16_FLOAT 390x384 +0 kB
Output R8G8B8A8_UNORM 390x384 +585.0 kB

Output Algorithm Input R8G8B8A8_UNORM 390x384x8 +4680.0 kB
Total (textures) 8482.5 kB
Input Buffer - Raw Bayer (10 bpp) 5376x3024 +19.4 MB
Output Buffer - YCbCr 4:4:4 (24 bpp) 5376x3024 +46.5 MB
Total (input and output buffer) 65.9 MB

Total 74.2 MB

It is possible to split the image into smaller parts to save memory on the CPU side
too. Määttä et al. have presented a line-buffer-based image processing framework
which managed to achieve a total memory consumption of 636 kB in the pipeline [34].
Although their pipeline contained few algorithms more than the one presented in
this thesis, the results clearly indicate that a proper CPU-based pipeline can be
implemented with much less memory usage than 8482.5 kB achieved by the GPU-
based implementation.

6.3 Thermal Measurements

The compare the heat generation of GPU and CPU, the test pipeline was run in
a loop for 10 minutes with both implementations. The measured CPU and GPU

6. Evaluation 47

temperatures are plotted in figure 6.1. The measurements indicate that the average
temperature increases faster at the beginning in the CPU implementation, but after
around 100 seconds, the GPU implementation catches up. One unexpected percep-
tion is that utilizing the GPU also increases CPU temperatures considerably. At
the end of the measurements, the average temperature of all sensors was 70 ◦C for
the CPU implementation and 76 ◦C for the GPU implementation. This indicates
that the GPU is more likely to cause overheating than the CPU, especially when
images are processed excessively as in this test.

0 100 200 300 400 50040

50

60

70

80

Time (s)

Te
m
pe

ra
tu
re

(◦ C
)

CPU temperature GPU temperature

(a) CPU pipeline

0 100 200 300 400 500

(b) GPU pipeline

Figure 6.1: Measured GPU and CPU temperatures for (a) CPU implementation and (b)
GPU implementation during processing.

Another interesting thermal-related property that can be measured is how con-
stant the processing time stays when multiple images are processed in a row. The
same pipelines were run with the same input image for 10 minutes and the process-
ing time of each run was measured. The measured processing times are illustrated
in figure 6.2. The initial CPU throughput is used as a reference, hence representing
the 100% processing time. The graph shows that there is very little variance in
the GPU processing time throughout the measurement. In the CPU implementa-
tion, however, the measured processing time varies considerably. In addition, the
CPU processing time increases significantly after few images have been processed.
Throughout the whole measurement, the average GPU processing time was 45% of
the initial CPU time while the average CPU processing time was 130% of its initial
value.

One reason for the increase in processing times on the CPU side could be that
the system is trying to prevent overheating by decreasing the CPU frequency. To
examine this issue further, the same pipeline was run again for 10 minutes for

6. Evaluation 48

0 50 100 150 200 250 300 350 400 450 500 550
40

60

80

100

120

140

160

Time (s)

Pr
oc
es
sin

g
tim

e
(%

)
CPU pipeline
GPU pipeline

Figure 6.2: The processing time of a single image during measurements.

both implementations, but during processing, the CPU frequency of each core was
measured. The average frequency of all four cores is illustrated in figure 6.3. The
measurements show that there is plenty of variance in the CPU frequency at the
beginning, but after few minutes the values get more stable. The measured CPU
frequency at the end of the CPUmeasurement was 26% less than the initial frequency
which explains the drop in throughput.

0 50 100 150 200 250 300 350 400 450 500 550

1500

2000

2500

Time (s)

C
PU

fre
qu

en
cy

(M
H
z)

CPU pipeline
GPU pipeline

Figure 6.3: The average frequency or all CPU cores during processing.

Another unexpected perception is that the CPU frequency drops even more signif-
icantly during GPU processing. Although the CPU frequency at the end of the GPU
measurement was 44% less than maximum, there does not seem to be a significant

6. Evaluation 49

decrease in GPU processing times. This perception could be explained by the mea-
sured temperatures in figure 6.1. Since the total temperature increases constantly
during GPU processing, the only option for the system to prevent overheating might
be reducing the CPU frequency. Clearly this approach is not enough the stop over-
heating since temperatures seemed to be increasing even after 10 minutes. On the
CPU side, however, the decreased CPU frequency seems to stop temperatures from
rising at around 350 seconds. The inability to reduce the GPU frequency to prevent
overheating is probably dependent on the platform, but in this case it can cause
severe overheating if both CPU and GPU are strained excessively for a long time.

6.4 Power Consumption

The power consumption of the framework was evaluated by processing 1000 images
through the pipeline. For every hundred frames, the battery charge of the device was
measured using an API provided by the Windows Phone platform. The test device
had a 3400 mAh battery which was fully charged before taking the measurements.
The measured battery charge levels are plotted in figure 6.4. As expected, the
power consumption was linear, so a fitting line was calculated using linear regression.
Because the GPU processes images much faster than the CPU, the battery charge
is illustrated as a function of number of processed images instead of time.

0 100 200 300 400 500 600 700 800 900 1000

3000

3100

3200

3300

3400

Number of processed images

Ba
tt
er
y
ch
ar
ge

(m
A
h)

CPU pipeline
GPU pipeline

Figure 6.4: The battery charge of the test device when 1000 images were processed con-
sequently.

The measurements show that the GPU requires much less power to process the
same image with same algorithms. Based on the linear regression line, the average
power consumption and the power consumption per image have been calculated to
table 6.4. Since these calculations were made based on the total power consumption

6. Evaluation 50

of the test device, also idle power consumption is included in the results.

Table 6.4: Calculated power consumptions.

Implementation Power consumption
(average)

Power consumption
(per image)

CPU 3690 mW 1.65 mWh
GPU 3510 mW 0.603 mWh

The average power consumption was only 5% lower with the GPU implementa-
tion, but the power consumption for processing a single image was 63% lower than
with the CPU implementation. The difference in the average power consumption
is insignificant, but the improvement in per image power consumption is a clear
advantage of the GPU implementation. The ability to process images faster on the
GPU leads into longer battery duration as long as the number of processed images
stays the same.

51

7. CONCLUSION

This thesis studied the use of GPU as an image processor in mobile devices. The
most notable limitation in implementing algorithms was the inability select the
output pixel position based on its value. This makes statistics gathering algorithms,
for example, really difficult to implement on the GPU. Basic single-pixel and filtering
algorithms, however, seemed to suit well for the GPU. The biggest performance gains
were achieved with algorithms that were computationally heavy.

A generic framework for GPU-based image processing was introduced to ease the
use of GPU for image processing tasks. The framework also made it possible to
implement algorithms without having to take care of hardware limitations such as
the maximum texture size. According to measurements, the GPU-based implemen-
tation was over 41% faster than an equivalent CPU implementation in initial runs.
When the pipeline was run for multiple times in a row, the performance difference
became even higher, since the GPU was able to keep the processing time constant
while the CPU implementation suffered from a serious decrease in performance af-
ter the test device warmed up. There was no significant difference in average power
consumption, but because of shorter processing times, the GPU was able to process
one image with 63% lower power consumption than the CPU.

The biggest drawbacks in using the GPU as an image processor were increased
heat and memory consumption. Overheating was visible after the GPU was strained
for couple of minutes continuously. In normal use where images are captured ran-
domly, the problem is probably not that critical. Although the memory consumption
can be tuned according to requirements, the GPU implementation requires more
memory than a line-buffer-based CPU implementation, because there are limita-
tions on how small the size of a single tile can be made before it has a significant
impact on processing times.

Despite the observed drawbacks, the GPU provides a really interesting platform
for image processing especially on high-end devices where there are plenty of memory
and other hardware resources available. It can be assumed that the performance of
mobile GPUs continues to increase faster than CPUs which emphasizes the use of
GPU in forthcoming products. In the future, the framework will be improved by
adding support to DirectCompute which will enable the use of GPU for even more
general-purpose computing.

52

REFERENCES
[1] Nakamura J. Image Sensors and Signal Processing for Digital Still Cameras.

Boca Raton 2006, CRC Press. 321 p.

[2] Nummela V. Camera Lenses. 2008. Nokia internal training material.

[3] Lukac, R. Single-Sensor Imaging: Methods and Applications for Digital Cam-
eras. Boca Raton 2009, CRC Press. 600 p.

[4] Litwiller D. CMOS vs. CCD: Maturing Technologies, Maturing Markets. Pho-
tonics Spectra 39(2005)8, pp. 54-61.

[5] SMIA 1.0 Part 2: CCP2 Specification [WWW]. Nokia Corporation,
ST Microelectronics NV. 2004. [Accessed on 4.3.2014]. Available at:
http://www.sunex.com/SIMA/SMIA_CCP2_specification_1.0.pdf

[6] Richardson, I. E. H.264 and MPEG-4 Video Compression: Video Coding for
Next Generation Multimedia. UK 2003, Wiley. 320 p.

[7] Hamilton, E. JPEG File Interchange Format [WWW]. C-
Cube Microsystems. 1992. [Accessed on 10.3.2014]. Available at:
http://www.w3.org/Graphics/JPEG/jfif3.pdf

[8] Sullivan, G. & Estrop, S. Recommended 8-Bit YUV Formats for Video Ren-
dering [WWW]. Microsoft Corporation. April 2002, updated on November
2008. [Accessed on 12.3.2014]. Available at: http://msdn.microsoft.com/en-
us/library/windows/hardware/dd206750

[9] Russ, J. C. The Image Processing Handbook. 6th Edition. Boca Raton 2011,
CRC Press. 838 p.

[10] Gonzalez, R. C. & Woods, R. E. Digital Image Processing. 2nd edition. New
Jersey 2002, Prentice Hall. 793 p.

[11] Kao, W.-C., Wang, S.-H., Chen, L.-Y. & Lin, S.-Y. Design Considerations of
Color Image Processing Pipeline for Digital Cameras. IEEE Transactions on
Consumer Electronics 52(2006)4, pp. 1144-1152.

[12] Bordallo López, M., Nykänen, H., Hannuksela, J., Silvén, O. & Vehviläinen, M.
Accelerating image recognition on mobile devices using GPGPU. IS&T/SPIE
Electronic Imaging 2011, San Francisco, California, USA, January 23-27, 2011.
Bellingham, WA, 2011, SPIE.

REFERENCES 53

[13] Ramanath, R., Snyder, W. E., Yoo, Y. & Drew, M. S. Color Image Processing
Pipeline. IEEE Signal Processing Magazine 22(2005)1, pp. 34-43.

[14] Battiato, S., Bruna, A. R., Messina, G. & Puglisi, G. Image Processing for
Embedded Devices. Italy 2010, Bentham Science Publishers. 376 p.

[15] Zheng, Y., Lin, S. & Kang, S. B. Single-Image Vignetting Correction. IEEE
Transactions on Pattern Analysis and Machine Intelligence 31(2009)12, pp.
2243-2256.

[16] Jia, J. & Tang, C-K. Tensor Voting for Image Correction by Global and Lo-
cal Intensity Alignment. IEEE Transactions on Pattern Analysis and Machine
Intelligence 27(2005)1, pp. 36-50.

[17] Trussell, H.J. & Hartwig, R. E. Mathematics for Demosaicking. IEEE Transac-
tions on Image Processing 11(2002)4, pp. 485-492.

[18] Malvar, H. S., He, L-W & Cutler, R. High-quality linear interpolation for de-
mosaicing of Bayer-patterned color images. IEEE International Conference on
Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada May 17-
21, 2004. USA 2004, IEEE.

[19] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn,
A. E. & Purcell, T. A Survey of General-Purpose Computation on Graphics
Hardware. Computer Graphics Forum 27(2007)1, pp. 80-113.

[20] Hughes, J. F., Van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner,
S. K. & Akeley, K. Computer Graphics: Principles and Practice. 3rd Edition.
USA 2013, Addison-Wesley Professional. 1264 p.

[21] Bailey, M. & Cunningham, S. Graphics Shaders: Theory and Practice. 2nd
Edition. Boca Raton 2012, CRC Press. 518 p.

[22] Sherrod, A. & Jones, W. Beginning DirectX 11 Game Programming. Boston
2012, Cengage Learning. 384 p.

[23] Pharr, M. & Fernando, R. GPU Gems 2: Programming Techniques for High-
Performance Graphics and General-Purpose Computation. USA 2005, Addison-
Wesley Professional. 880 p.

[24] NVIDIA. CUDA Parallel Computing Platform
[WWW]. [Accessed on 28.4.2014]. Available at:
http://www.nvidia.com/object/cuda_home_new.html

REFERENCES 54

[25] Munshi, A. The OpenCL Specification, version 1.2. [WWW]. Khronos OpenCL
Working Group. November 2011, updated on November 2012. [Accessed on
28.4.2014]. Available at: http://www.khronos.org/registry/cl/specs/opencl-
1.2.pdf

[26] Microsoft. Compute Shader Overview [WWW]. [Accessed
on 28.4.2014]. Available at: http://msdn.microsoft.com/en-
us/library/windows/desktop/ff476331%28v=vs.85%29.aspx

[27] Garrard, A. Moving to Mobile Graphics and GPGPU - Forget Everything You
Know. SIGGRAPH 2013, Anaheim, USA, July 21-25, 2013. New York, NY
2013, ACM Press.

[28] Cheng, K-T. &Wang, Y-C. Using Mobile GPU for General-Purpose Computing
- A Case Study of Face Recognition on Smartphones. 2011 International Sym-
posium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan,
April 25-28, 2011. 2011, IEEE.

[29] Singhal, N., Yoo, J. W., Choi, H. Y. & Park, I. K. Design and Optimization of
Image Processing Algorithms on Mobile GPU. In proceeding of: International
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
2011, Vancouver, BC, Canada, August 7-11, 2011. New York, NY 2011, ACM
Press.

[30] Zink, J., Pettineo, M. & Hoxley, J. Practical Rendering & Computation with
Direct3D 11. Boca Raton 2011, CRC Press. 648 p.

[31] Engel, W. GPU Pro 2: Advanced Rendering Techniques. Natick, MA 2011, A
K Peters. 470 p.

[32] Direct3D 11 Reference [WWW]. Microsoft Corporation. [Ac-
cessed on 21.3.2014]. Available at: http://msdn.microsoft.com/en-
us/library/windows/desktop/ff476147%28v=vs.85%29.aspx

[33] Wang, L., Zhang, Y. & Feng, J. On the Euclidean Distance of Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(2005)8, pp. 1334-
1339.

[34] Määttä, J.-M., Vanne, J., Hämäläinen, T. D. & Nikkanen, J. Generic Soft-
ware Framework for a Line-Buffer-Based Image Reconstruction Pipeline. IEEE
Transactions on Consumer Electronics 57(2011)3, pp. 1442-1449.

	Introduction
	Digital Camera System
	Hardware
	Lens System
	Image Sensor

	Image Processing Pipeline
	Image Formats
	Digital Image Processing Techniques
	Processing Algorithms

	Image Processing on GPU
	Motivation
	Programmable Graphics Pipeline
	Vertex Shader
	Pixel Shader

	Utilizing GPU for Image Processing
	Special Considerations for Mobile Devices

	Framework for GPU-Based Image Processing
	Direct3D and High Level Shading Language
	Architecture
	Algorithm Interfaces
	Tiled Processing
	Resource Management
	Texture Pool
	Resource Cache
	State Manager

	Optimization for Mobile GPUs
	Test Hardware and Setup
	Fixed-Point versus Floating-Point
	Texture Size
	Concurrent Processing and Texture Transfers

	Evaluation
	Processing Performance
	Memory Consumption
	Thermal Measurements
	Power Consumption

	Conclusion
	References

